Bedriftsøkonomi og finans – arbeidskrav 3

På tide med arbeidskrav 3. 

Vi tar utgangspunkt i disse tallene:

1. Hva var totalkapitalens rentabilitet før skatt for Tuscon Subsea AS i 20×1? Oppgi svaret (kun tallet) i hele prosent (avrund hvis nødvendig).

Rentabilitet er en metode for å måle resultatet i bedriften opp i mot investert kapital. Når vi måler rentabiliteten til totalkapitalen, slik vi skal i denne oppgaven, måler vi bedriftens avkastning på den samlede kapitalen som er bundet i bedriften. Totalkapitalrentabiliteten vil dermed gi oss et tall på nivået på bedriftens inntjening, og hvor godt man har “drevet butikken”. Eller med andre ord: hvor effektiv bedriften har vært til å forvalte de ressursene de har.

Totalkapitalrentabiliteten beregnes slik:

(Driftsresultat + finansinntekter) / gjennomsnittlig totalkapital

Når det gjelder gjennomsnittlig totalkapital så finner du denne ved å ta totalkapitalen fra fjoråret (IB) pluss totalkapitalen fra dette året (UB) og dele det på to. Totalkapitalen er sum eiendeler (aktiva) eller sum egenkapital og gjeld (passiva). Disse vet vi (jfr. balansen) at er det samme. For denne bedriften er IB totalkapital 90.000.000 og UB totalkapital…?

Nå er det bare å regne ut på kalkulatoren, så finner du svaret.

Når du ser på svaret, tenker du kanskje “er dette bra eller dårlig”?. Vel, det kommer blant annet an på hvor stor risiko virksomheten representerer, men den bør jo absolutt være høyere enn lånerenten. Altså bør vi for hver krone vi låner, tjene mer enn én krone.

Gjennomsnittlig totalkapitalrentabilitet for norske bedrifter i 2011 var 9,2%

 

 

2. Hva var egenkapitalens rentabilitet før skatt for Tuscon Subsea AS i 20×1? Oppgi svaret (kun tallet) i hele prosent (avrund hvis nødvendig).

Da vi regnet ut totalkapitalrentabiliteten (TKR) så vi hvordan den samlede kapitalen til bedriften forrentet seg. Nå skal vi se på egenkapitalens rentabilitet (EKR), som er veldig interessant for eierne og potensielle eiere av bedriften. Den viser hvordan eiernes investerte kapital utvikler seg. Dersom man står overfor en bedrift som er 100% finansiert av egenkapital (ingen gjeld), vil totalkapitalrentabiliteten og egenkapitalrentabiliteten være like stor. (Det er klare sammenhenger mellom EKR og TKR, og denne kan blant annet illustreres gjennom brekkstangformelen.) For deg som skal investere penger vil det kanskje være interessant å se hvilke av bedriftene du skal investere i som har høyest egenkapitalrentabilitet. Det som er viktig å huske er at eierne kommer sist når kapitalen skal fordeles. Først skal vareleverandørene, arbeidstakere, bankene osv. ha sine penger. Deretter, hvis det er noe til overs, går det til egenkapitalen. 

Egenkapitalrentabiliteten bør som regel være høyere enn totalkapitalrentabiliteten. Dette fordi investorene som skyter inn pengene sine tar en mye høyere risiko enn f.eks. en produsent som selger en vare til bedriften. I tillegg bør den utvilsomt være bedre enn forventet avkastning på markedsporteføljen (f.eks. hovedindeksen på Oslo Børs). Dette fordi det er større risiko knyttet til å ha pengene sine i en virksomhet enn å ha pengene sine investert i hovedindeksen (mao mange bedrifter i forskjellige bransjer). Jo høyere risiko vi tar, jo høyere avkastning vil vi i sum kreve.

Vanligvis ønsker eierne å vite hvor mye av resultatet som går i deres “lomme”, derfor er det vanligste å beregne egenkapitalrentabiliteten etter skatt, men i denne oppgaven bes vi beregne den før skatt. Da er formelen slik:

ordinært resultat før skatt / gjennomsnittlig egenkapital 

Gjennomsnittlig egenkapital får du ved å ta IB egenkapital + UB egenkapital og dele det på 2. UB egenkapital i våre tall er 42.984, og IB egenkapital er…?

 

 

 

3. Hvor mye ble avsatt til utbytte per 31.12.20×1? Oppgi svaret i hele tusen kroner (kun tallet), og bruk punktum som tusenskiller.

Hvis dere ikke har lært dere denne sammenhengen, så kan det hende dere syns BØK er litt håpløst. Denne ligninga får ofte mye til å løsne i dette faget:

IB + tilkomst – avgang = UB

For den som trenger å få det inn med teskje. Det denne ligninga sier er: 
Så mye hadde jeg (IB) + så mye fikk jeg (tilkomst) – så mye ga jeg bort (avgang) = så mye har jeg igjen (UB).

Tilkomst er det som gjør at beholdningen/balanseposten blir større.
Avgang er det man kvitter seg med, og som følgelig gjør at beholdningen eller balanseposten blir mindre.

Denne kan også brukes her, og da må vi spørre oss selv, hva er “tilkomsten” og “avgangen” her? 

Hvordan er det vi får tilkomst til egenkapitalen? Jo, egenkapitalen vokser hvis vi får et positivt resultat, og/eller hvis man får skutt inn egenkapital fra investorer.
Hvordan får vi “avgang”? Jo, egenkapitalen vil krympe hvis selskapet gir ut utbytte til eierne, eller ved underskudd i driften. Derfor blir sammenhengen slik:

IB EK + resultat + innskutt egenkapital – avsatt utbytte = UB EK

Løs denne ligningen med hensyn på avsatt utbytte.

Oppgaven sier ikke noe om innskutt egenkapital, så denne antar vi at er 0!

————-

Vi skal nå foreta ett ledd i det som kalles en likviditetsanalyse. Det er en analyse av betalingsevnen til en bedrift, altså bedriftens evne til å betale sine regninger i tide. Så vidt jeg kan se, skal dere ta for dere følgende “direkte” måter å beregne likviditeten til en bedrift på:
– Likviditetsgrad 1 (bør være større enn 2)
– Likviditetsgrad 2 (bør være større enn 1)
– Arbeidskapital

Det er viktig å presisere at man ikke får et fullstendig bilde ved å foreta disse analysene, da de er basert på balansen. Som vi vet gir balansen et uttrykk for en bedrifts finansielle situasjon på et gitt tidspunkt. Det kan gi et feilaktig bilde. Ta f.eks. en titt på likviditetsgradene til en av verdens største bedrifter, Coca Cola. Er likviditeten pr. definisjon god? Kanskje ikke. Er Coca Cola på randen av konkurs? Tvilsomt.

Det er viktig å se på andre faktorer, som f.eks. kredittider på gjeld og fordringer, nedbetalingstider, ubenyttet kassakreditt osv, osv…

 

 

4. Hva var endringen i arbeidskapitalen fra 20×0 til 20×1? Oppgi svaret (kun tallet) i hele tusen kroner og bruk punktum som tusenskiller. Har arbeidskapitalen blitt redusert, skal endringen angis med negativt fortegn.

Arbeidskapitalen er en viktig størrelse i regnskapet, og brukes ofte til å analysere likviditeten til en bedrift. Dette er kapital som en bedrift behøver for å finansiere varer og tjenester i arbeid inntil de er solgt og oppgjøret er på konto. 

Formelen er slik:

Arbeidskapital = omløpsmidler – kortsiktig gjeld

Det vi kan lese ut fra denne sammenhengen er at hvis arbeidskapitalen er positiv (>0), er deler av omløpsmidlene finansiert av langsiktig gjeld eller EK. Dersom den er negativ (<0) er noe av anleggsmidlene finansiert av kortsiktig gjeld. En gylden regel er at de AM ikke skal være finansiert av KG. Er den det, og arbeidskapitalen følgelig negativ, er som regel likviditeten til bedriften også dårlig, og de vil ha problemer med å betale sine forpliktelser i tide. 

 

Regn ut arbeidskapitalen for de to årene, og se hva endringen er.

 

 

5. Beregn likviditetsgrad 1 per 31.12.20×1. Oppgi svaret (tallet) med to desimalers nøyaktighet og uten benevning. Bruk komma som desimaltegn.

Likviditetsgrad 1 er et enkelt regnestykke. Man ser på forholdet mellom omløpsmidlene (bankinnskudd, fordringer, varelager osv.) og den kortsiktige gjelden. Altså:

L1 = omløpsmidler / kortsiktig gjeld

Her skal du bruke tallene for 20X1, ikke gjennomsnittet mellom IB og UB!

 

Litt om likviditetsgrad 2 i tillegg:

Likviditetsgrad 2 beregnes nesten likt, men tar utgangspunkt i våre mest likvide omløpsmidler – altså de omløpsmidlene som er penger, eller fort kan gjøres om til penger (eller til “likvider” som man sier når man skal være fancy). Dette betyr for alle praktiske formål omløpsmidler minus regnskapsført verdi på varelageret vårt. Dette ser vi i forhold til kortsiktig gjeld. Altså:

L2 = (omløpsmidler – varelager) / kortsiktig gjeld

 

 

 

6. Beregn egenkapitalprosenten per 31.12.20×1.  Oppgi svaret (kun tallet) med to desimalers nøyaktighet.
Egenkapitalprosenten (også kalt egenkapitalandelen) viser hvor stor del av samlet kapital i bedriften som er egenkapital, altså hvor stor prosent av eiendelen som er finansiert med egne midler. Med andre ord viser dette hvor mye bedriften kan tape før det begynner å gå på bekostning av de vi har lånt penger av. Dette nøkkeltallet sier noe om bedriftens soliditet. Soliditeten til en bedrift forteller oss noe om hvor stor evne bedriften har til å tåle tap. Jo større prosent, desto mer solid er bedriften. 

Formelen er slik:
Egenkapitalprosent = egenkapital / totalkapital

Totalkapitalen er, som jeg gjentar til det kjedsommelige, summen av dine eiendeler (aktiva) eller summen av din egenkapital og gjeld (passiva). De skal være like store, jfr. balansen. Ettersom det er 20X1 vi skal regne ut, bruker vi tallene fra 20×1 🙂

 

 

 

7. Bedriften har verdsatt sitt varelager meget forsiktig. Per 31.12.20×0 utgjorde skjulte reserver kr 4 000 000.  Per 31.12.20×1 utgjorde skjulte reserver kr 4 700 000.  Beregn korrekt driftsresultat for 20×1. Oppgi svaret i kroner (kun tallet). Bruk punktum som tusenskiller.

Mange syns dette med skjulte reserver er litt vanskelig, fordi boka forklarer det litt for komplisert for mange. Helt enkelt forklart er en skjult reserve en positiv forskjell mellom den virkelige verdien, og den balanseførte verdien av en eiendel. Man kan også få skjulte reserver i gjeld, men da hvis den virkelige gjelden er lavere enn den balanseførte.

Det vi kan resonere oss fram til er at dersom det viser seg at vi har lavere gjeld eller større verdi på anleggsmidler eller omløpsmidler enn vi trodde, vil dette påvirke egenkapitalposten i balansen vår. Egenkapitalen vil øke. 

De oppgavene dere får er ofte sammensatt av informasjon om skjulte reserver over x antall år, og viser hvordan den skjulte reserven øker, synker eller forholder seg lik over tid. Det som er viktig å merke seg da er at hvis en skjult reserve forholder seg uendret fra et år til et annet, vil ikke dette påvirke resultatet. Dette fordi økningen av egenkapitalen er like stor ved inngangen som utgangen av året. Hvis vi ser en reduksjon i skjulte reserver vil det reelle resultatet være dårligere enn det fremstår. Hvis vi ser en økning (slik i vår oppgave) i skjulte reserver er det reelle resultatet bedre enn det som fremstår i regnskapet.

 Så, det var teorien. Hvordan skal vi løse slike oppgaver? Jo, det finnes en veldig enkel fasit, og den er som følger (VIKTIG, kommer ofte på eksamen!):

Skjulte reserver UB 20×0 = 4.000.000
Skuljte reserver UB 20×1 = 4.700.000
Endring skjulte reserver = 700.000 (økning)

 

Bokført driftsresultat 20×1= ???
Endring i skjulte reserver = ???
Virkelig driftsresultat 20×1 = ???

 

 

8. Du får følgende opplysninger om en bedrift: 
Totalkapitalens omløpshastighet er 4.
Resultatgraden er 3%.
Gjennomsnittlig gjeldsrente er 5%.
Total gjeld utgjør 15 mill.kr.
Egenkapitalen utgjør 30 mill.kr.

Hva er egenkapitalens rentabilitet? Oppgi svaret i % (kun tallet) med en desimals nøyaktighet.  Bruk komma som desimaltegn.

Denne fremstår kanskje som litt krevende, men det er ved å løse slike oppgaver at det ofte går opp et lys eller to. La oss systematisere informasjonen noe:

 

Altså:
-Totalkapitalens omløpshastighet er 4. 
*Forteller oss at den investerte kapitalen blir omsatt 4 ganger i løpet av et år. Formelen for totalkapitalens omløpshastighet er:
salgsinntekt / gjennomsnittlig totalkapital

-Resultatgraden er 3%. 
*Forteller oss hvor stor del som tilfaller selskapet av hver krone som omsettes. Mao, hvor stor lønnsomheten er i forhold til de totale inntektene.
Formelen er: ordinært resultat før skatt + rentekostnad / salgsinntekt

-Gjennomsnittlig gjeldsrente er 5%. 
*Forteller oss at vi i snitt betaler 5% rente på våre lån.
Formelen for gjennomsnittlig gjeldsrente er: rentekostnad/gjennomsnittlig gjeld

-Total gjeld utgjør 15.000.000
-Egenkapitalen utgjør 30.000.000
* Summen av total gjeld og egenkapital forteller oss at totalkapitalen er på 45.000.000 kroner. Totalkapitalen er jo som kjent summen av våre eiendeler (aktiva) eller vår egenkapital og gjeld (passiva)

Når jeg da i tillegg presenterer følgende formel, som kalles brekkstangformelen (viktig å lære, kommer ofte tekstspørsmål om denne på eksamen OBSOBS! Les side 454-455 i Økonomistyring 1-boka (Sending)), så blir dette kanskje lettere enn vi hadde trodd.

Brekkstangformelen:
EKR = TKR + (TKR – GGR) * G/EK

Hvor:
EKR = egenkapitalrentabiliteten
TKR = totalkapitalrentabiliteten
GGR = gjennomsnittlig gjeldsrente
G/EK = gjeld/egenkapital 

Nå har vi en ligning med to ukjente (TKR og EKR). Hvis vi da retter vårt blikk til side 450 i Sending-boka, ser vi på DuPont-modellen at totalkapitalrentabiliteten fremkommer som et produkt av kapitalens omløpshastighet og resultatgraden. Med andre ord finner vi TKR ved å ta:

Kapitalens omløpshastighet * resultatgraden = 4 * 3% = 4*0,03 = 0,12

Nå er brekkstangformelen plutselig bare med én ukjent, nemlig EKR, så da er det bare å regne ut.

 

 

 

9. En bedrift har anskaffet et varig driftsmiddel for kr 1.200.000 inklusive mva. Forventet levetid for driftsmiddelet er 5 år. Anslått salgsverdi ved utløpet av levetiden er kr 100.000 inklusive mva. Anta at bedriften benytter lineære avskrivninger. Hva blir avskrivningene i år tre? Oppgi svaret (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

Hva er en avskriving? Det enkleste er å se på det som en slags periodisering av kostnadene knyttet til en stor investering som du “forbruker” over tid. F.eks. hvis du kjøper et anleggsmiddel i form av en maskin du skal bruke til produksjonen, er det feil å sette av hele denne utgiften i det året du kjøpte den. Du fordeler utgiften som kostnad over dens levetid.

Det finnes flere måter å beregne avskrivinger på, og det er opp til hver enkelt bedrift å avgjøre hvilken metode som er mest fornuftig for deres investeringer. De metodene vi kommer borti i dette faget er:

Lineær avskriving. Lineær avskrivingsmetode betyr at avskrivingen skal være den samme hvert år.
Saldoavskriving: Hvert enkelt år avskrives med en konstant prosentandel av det som er bokført verdi av f.eks maskinen ved årets begynnelse (01.01.XXXX). Denne metoden innebærer, i motsetning til lineær avskriving at avskrivingene vil bli lavere for hvert år, siden bokført verdi hele tiden reduseres etter hvert som driftsmiddelet avskrives.
I tillegg til disse har du også produksjonsenhetsmetoden, som tar hensyn til at driftsmidlets verdiforringelse skyldes bruken av det, og ikke så mye av “tidens tann”. 

I denne oppgaven får du oppgitt at bedriften bruker lineær avskrivingsmetode. Vi får oppgitt at forventet levetid er 5 år (altså skal de fordele kostnadene over 5 år). Når de fem årene har gått, kommer den fremdeles til å ha en markedsverdi på 100.000 (80.000 eks mva) – altså er den ikke “helt oppbrukt”.

Da må du rett og slett finne ut hva den årlige avskrivingssummen er. Den er som sagt den samme hvert år når man benytter lineær avskriving. 

Formelen for lineære avskrivninger er 

(Anskaffelseskost – utrangeringsverdi) / forventet levetid

Husk at summene skal være eks mva. Du skal jo ikke avskrive momsen. Vil du lære mer om mva-regning, har jeg skrevet et innlegg om det her: http://hobbyokonomen.blogg.no/1442513016_17092015.html

 

 

 

10. En bedrift har anskaffet et varig driftsmiddel for kr 1.200.000 inklusive mva. Forventet levetid for driftsmiddelet er 5 år. Anslått salgsverdi ved utløpet av levetiden er kr 100.000 inklusive mva. Anta at bedriften benytter saldoavskrivninger. Saldoavskrivningssatsen er satt til 40%. Hva blir avskrivningene i år tre? Oppgi svaret (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

Saldoavskrivingssatsene vil variere fra år til år. De vil bli mindre for hvert år, ettersom de baseres på en prosentsats av restverdien ved inngangen av året.

Generelt betyr det altså.

 

År 1: restverdi pr. 1.1 * saldosats = avskrivingsbeløp år 1

År 2: (restverdi år 1 – avskrivingsbeløp år 1) * saldosats.

 

Et eksempel med tall:

 

Verdi varig driftsmiddel: 1.000.000

Prosentsats: 10%

 

År 1: 1.000.000 * 0,10 = 100.000 <—– Avskrivingsbeløpet i år 1 er altså 100.000

År 2: (1.000.000-100.000) * 0,10 = 90.000 <——- Verdien i år 2 er 900.000, og avskrivingssummen er derfor 90.000

År 3: (900.000-90.000) * 0,10 = 81.000 <—- Avskrivingssummen i år 3 er 81.000

 

Nå, prøv det samme med tallene i vår oppgave. Husk at også her må du trekke fra mva. på alle verdiene 🙂

 

Bedriftsøkonomi og finans – Arbeidskrav 2 (2017)

Heisann. Her kommer arbeidskravet for Bedriftsøkonomi og finans. Kos eder.

 

Oppgave 1
En bedrift har anskaffet et varig driftsmiddel for kr 1.000.000 eksklusive mva. Forventet levetid for driftsmiddelet er 5 år. Anslått salgsverdi ved utløpet av levetiden er kr 100.000 eksklusive mva. Anta at bedriften benytter lineære avskrivninger. Hva blir avskrivningene i år tre? Oppgi svaret (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

 

Hva er en avskriving? Det enkleste er å se på det som en slags periodisering av kostnadene knyttet til en stor investering som du “forbruker” over tid. F.eks. hvis du kjøper et anleggsmiddel i form av en maskin du skal bruke til produksjonen, er det feil å sette av hele denne utgiften i det året du kjøpte den. Du fordeler utgiften som kostnad over dens levetid.

Det finnes flere måter å beregne avskrivinger på, og det er opp til hver enkelt bedrift å avgjøre hvilken metode som er mest fornuftig for deres investeringer. De metodene vi kommer borti i dette faget er:

Lineær avskriving. Lineær avskrivingsmetode betyr at avskrivingen skal være den samme hvert år.
Saldoavskriving: Hvert enkelt år avskrives med en konstant prosentandel av det som er bokført verdi av f.eks maskinen ved årets begynnelse (01.01.XXXX). Denne metoden innebærer, i motsetning til lineær avskriving at avskrivingene vil bli lavere for hvert år, siden bokført verdi hele tiden reduseres etter hvert som driftsmiddelet avskrives.
I tillegg til disse har du også produksjonsenhetsmetoden, som tar hensyn til at driftsmidlets verdiforringelse skyldes bruken av det, og ikke så mye av “tidens tann”. 

I denne oppgaven får du oppgitt at bedriften bruker lineær avskrivingsmetode. Vi får oppgitt at forventet levetid er 5 år (altså skal de fordele kostnadene over5 år). Når de fem årene har gått, kommer den fremdeles til å ha en markedsverdi på 100.000  – altså er den ikke “helt oppbrukt”. vi sier at utrangeringsverdien er 100.000.

Da må du rett og slett finne ut hva den årlige avskrivingssummen er. Den er som sagt den samme hvert år når man benytter lineær avskriving. 

Formelen for lineære avskrivninger er 

(Anskaffelseskost – utrangeringsverdi) / forventet levetid

 

Oppgave 2

En bedrift har anskaffet et varig driftsmiddel for kr 1.000.000 eksklusive mva. Forventet levetid for driftsmiddelet er 5 år. Anslått salgsverdi ved utløpet av levetiden er kr 100.000 eksklusive mva. Anta at bedriften benytter saldoavskrivninger. Saldoavskrivningssatsen er satt til 40%. Hva blir avskrivningene i år tre? Oppgi svaret (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

Saldoavskrivingsbeløpene vil variere fra år til år. De vil bli mindre for hvert år, ettersom de baseres på en prosentsats av restverdien ved inngangen av året.

Generelt betyr det altså.

 

År 1: restverdi pr. 1.1 * saldosats = avskrivingsbeløp år 1

År 2: (restverdi år 1 – avskrivingsbeløp år 1) * saldosats.

 

Et eksempel med tall:

 

Verdi varig driftsmiddel: 1.000.000

Prosentsats: 10%

 

År 1: 1.000.000 * 0,10 = 100.000 <—– Avskrivingsbeløpet i år 1 er altså 100.000

År 2: (1.000.000-100.000) * 0,10 = 90.000 <——- Verdien i år 2 er 900.000, og avskrivingssummen er derfor 90.000

År 3: (900.000-90.000) * 0,10 = 81.000 <—- Avskrivingssummen i år 3 er 81.000

 

Nå, prøv det samme med tallene i vår oppgave 🙂

 

Oppgave 3
En bedrift benytter lineære avskrivninger for sine maskiner. Avskrivningssatsen er 20 %. Maskinene ble kjøpt inn ved inngangen til året 20×1 for kr 2.000.000 eksklusive mva. Restverdi ved utløpet av levetiden ble anslått til kr 200.000 eksklusive mva. Etter tre år ble maskinen solgt. Gevinsten ved salget var kr 15.000.  Hva var salgssummen eksklusive mva? Oppgi salgssummen (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

 

Her har vi lineære avskrivinger, men med en avskrivingssats på 20%. Dette kan virke forvirrende, siden vi har en prosentsats OG beskjed om å bruke lineær metode. Dette er egentlig bare en måte å si at du skal avskrive over 5 år. Lineær avskrivingsmetode betyr jo at avskrivingen skal være den samme hvert år. Ettersom vi også får oppgitt at avskrivingssatsen er 20%, betyr det at maskinen avskrives med 20% av anskaffelseskost hvert år – og det må det bety at de beregner levetiden (brukstiden) til å være 5 år. Hadde satsen vært 25% hadde de beregnet levetiden (brukstiden) å være 4 år. 10%, 10 år, osv osv. 

Twisten i denne oppgaven er at de ikke hadde den hele den planlagte levetiden. De solgte den etter 3 år. Da må finne ut hva maskinene var verdt etter tre år. I tillegg får du informasjon om at de solgte den med en gevinst (altså fikk de 15.000 mer enn den egentlige verdien). 

Finn akkumulerte avskrivinger for de 3 årene (altså den samlede avskrivingen etter 3 år). Trekk disse fra anskaffelseskosten, og pluss på 15.000, så har du nok svaret. Det fikk i hvertfall jeg.

Oppgave 4
Bedriften Troll Plast AS betalte i 20×1 diverse driftskostnader med kr 1.323.750 inkl. mva. Ved inngangen til året 20×1 hadde bedriften ubetalte diverse driftskostnader for kr 58.750 inkl. mva. Ved utgangen av året 20×1 hadde bedriften ubetalte diverse driftskostnader for kr 90.000 inkl. mva. Hvilket beløp ble diverse driftskostnader ført med i resultatregnskapet for 20×1? Oppgi beløpet (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

Periodisering. Hva hører til 20×1? Vi må forstå at det er forskjell på en utbetaling og en kostnad. En utbetaling kan skje når som helst, men kostnaden skal resultatføres når kostnaden oppstår, og ikke når utbetalingen skjer. Hvis du kjøper noe i januar,  får en regning, og betaler den i mars, skal kostnaden føres i januar – men utbetalingen skjer i mars.

De betalte til sammen 1.323.750 inkl mva i 2016 Av disse tilhører 58.750 året før, og da året var omme var det fremdeles 90.000 de ikke hadde betalt som tilhørte 20×1. Disse betalte du sannsynligvis i 20×2, men de skal fortsatt føres i 20×1 

Trekk fra alt som ble betalt i 20×1 som tilhører andre år, og legg til alt som tilhører 20×1, men som ble betalt i et annet år. Trekk deretter fra momsen på beløpet, og du har svaret ditt. 

Oppgave 5
I løpet av 2015 har Polar Energy AS registrert mange transaksjoner. Bl.a. har selskapet kjøpt en maskin som ble betalt kontant. I regnskapet ble virkningene registrert på følgende måte

Transaksjon

AM

+

OM

=

EK 1.1

+

Resultat

+

LG

+

KG

Kjøpt maskin

700.000

 

-875.000

 

 

 

 

 

 

 

-175.000

 

Maskinen ble kjøpt 1.september og den skal avskrives lineært med en antatt levetid på fem år og en antatt salgsverdi (restverdi) på kr 100.000 ekskl. mva. Ved årsoppgjøret for 2015 har bedriften et resultat før skatt på kr 845.000 før bedriften har regnskapsført årets avskrivninger på maskinen. Hva blir ordinært resultat før skatt i 2015 etter at bedriften har regnskapsført årets avskrivninger på maskinen? Oppgi svaret (kun tallet) i hele kroner og bruk punktum som tusenskiller.

Periodisering igjen. Det du må gjøre her er å finne ut hva avskrivingene utgjør hver MÅNED. Deretter må du justere resultatet for de kostnadene avskrivingene faktisk er. Resultatet er jo inntekt-kostnad, så når kostnadssiden øker, vil resultatet forverres noe. 

Fremgangsmåte: 

#1: finn årlig avskriving
#2: del på 12, for å få månedlig avskriving
#3: Fra 1. september til 31. desember er det 4 måneder. Det vil si at resultatet forverres med 4*månedlig avskrivingsbeløp. 

PS: Husk at anskaffelsesverdien ikke er 875.000, men 700.000. Du skal jo ikke avskrive momsen. 

 

Oppgave 6
En bedrift har per 31.12.20×1 kr 10.300.000 i anleggsmidler , kr 14.400.000 i kortsiktig gjeld, kr 16.000.000 i langsiktig gjeld og kr 8.860.000 i egenkapital. Hva er beløpet for bedriftens omløpsmidler? Oppgi svaret (kun tallet) i hele kroner, og bruk punktum som tusenskiller.

Her er det bare å bruke balanseligningen, og løse den med hensyn på OM:
AM + OM = EK + LG + KG

 

Oppgave 7
En varehandelsbedrift hadde per 01.01.2015 varer på lager for  kr 2.300.000 målt til innkjøpspriser.  Per 31.12.2015 hadde bedriften varer på lager for kr 2.000.000.  Bedriftens vareforbruk (varekostnad) i 2015 var kr 13.800.000.  Hva var bedriftens varekjøp ekskl. mva i  2015 ?  Oppgi svaret (kun tallet) i hele kroner og bruk punktum som tusenskiller.

Hvis dere ikke har lært dere denne sammenhengen, så kan det hende dere syns BØK er litt håpløst. Denne ligninga får ofte mye til å løsne i dette faget:

IB + tilkomst – avgang = UB

For den som trenger å få det inn med teskje. Det denne ligninga sier er: 
Så mye hadde jeg (IB) + så mye fikk jeg (tilkomst) – så mye ga jeg bort (avgang) = så mye har jeg igjen (UB).

Tilkomst er det som gjør at beholdningen/balanseposten blir større.
Avgang er det man kvitter seg med, og som følgelig gjør at beholdningen eller balanseposten blir mindre.

Denne kan også brukes for å se på varelagerets beholdningsendring fra starten av året (IB) til slutten av året (UB). Da må vi spørre oss: hva er “tilkomsten” og “avgangen” til balanseposten: varelager? Jo, balanseposten (varelageret) ØKER når vi kjøper inn varer – det er tilkomsten vår. Varelageret MINKER når vi forbruker varer. Derfor kan vi si at:

IB varelager + varekjøp – vareforbruk = UB varelager.

Det du hadde ved inngangen til året, pluss det du kjøpte inn, minus det du brukte, er det du sitter igjen med ved slutten av året.

Denne ligninga kan du løse med hensyn på varekjøp, slik at:
Varekjøp =  Vareforbruk + UB varelager – IB varelager

Oppgave 8, 9 og 10
Disse klarer du selv 🙂