Sånn. Her har jeg skriblet ned litt om finans-arbeidskravet. Håper det står til forventingene.
Oppgave 1
En obligasjon med pålydende verdi kr. 1.000 og 8% kupong forfaller om 20 år. Kupongen utbetales halvårlig. Markedsrenten (effektiv årlig avkastning) er 12%. Hvor mye er du villig til å betale for obligasjonen?
Hva er en obligasjon?
Kort forklart er en obligasjon en kontrakt som viser at du har lånt ut penger. Et eksempel er en statsobligasjon, som du får når du har lånt ut penger til staten. Obligasjoner er også noe som brukes ofte av finansinstitusjoner og store bedrifter.
En obligasjon blir lagt ut med et pålydende beløp, for eksempel 1.000 kroner slik som i denne oppgaven. Dette er lånebeløpet. Du låner ut 1.000 kroner, og får obligasjonen. Obligasjoner blir ofte utstedt med en fast rente, som vi kaller kupongrente – ofte bare forkortet til kupong (8% i året i denne oppgaven). Som eier av obligasjonen får du derfor et rentebeløp på avtalte tidspunkt (to ganger i året i denne oppgaven) gjennom tiden du låner ut pengene (løpetiden). Pålydende – altså det du lånte ut – blir ikke betalt tilbake før obligasjonen forfaller (etter 20 år i denne oppgaven). Noen obligasjoner legges ut for salg uten rente, og disse kalles “nullkupong-obligasjoner”. Ettersom ingen er villig til å låne ut penger gratis, ligger disse som regel ut for et lavere beløp enn pålydende. Dvs at du kan kjøpe en obligsjon med pålydende 1.000 kroner for f.eks. 900 kroner. Da tjener du 100 kroner når obligasjonen forfaller. Så blir det opp til deg å se om 100 kroner er en riktig pris på dine penger. Dette vil jo avhenge av risiko, løpetid på obligasjonen, og hvilken rente du kunne fått på alternative plasseringer i markedet. Obligasjoner med løpetid under ett år kalles gjerne bare sertifikater.
Forskjellen på en obligasjon og et vanlig banklån er at obligasjoner kan omsettes på børsen slik som mange andre verdipapirer. Vi sier at de er omsettelige. For deg som lånegiver betyr det at du ikke trenger å vente til forfall med å få tilbake pengene dine. Du kan selge obligasjonen din, og dermed gjøre plasseringen likvid (les: gjøre om til penger).
Jeg skal ikke bruke mye mer plass på å forklare obligasjoner, men jeg vil forklare grunnen til at obligasjoners pris og obligasjoners pålydende ikke alltid (dvs ganske sjelden) er lik.
Når du kjøper en obligasjon pådrar du det i hovedsak to typer risiko: kredittrisiko og kursrisiko.
*Kredittrisiko er knyttet til konkursrisikoen for den som utsteder obligasjonen (bedriften f.eks.). Det vil jo medføre at du ikke får lånet tilbakebetalt. Kredittrisikoen på en norsk statsobligasjon vil være tilnærmet lik null, ettersom det er ganske utenkelig at den norske stat ikke kan tilbakebetale sine forpliktelser til obligasjonseierne. De kan jo bare trykke nye penger…
* Kursrisiko er knyttet til det jeg skrev tidligere: pålydende og markedsprisen (kursen) på obligasjonen vil være forskjellig. Her begynner vi å nærme oss kjernen i teorien som vi får bruk for i oppgaven. Obligasjoner omsettes nemlig for dens nåverdi. Her mener vi nåverdi i sin vanlige form, slik som når vi regner på investeringer for øvrig (gjennom kontantstrømmer har dere jo regnet ut nåverdien av flere realinvesteringer tidligere). Statsobligasjoner vil være knyttet til kursrisiko på lik linje med andre obligasjoner.
Så kort oppsummert: en obligasjons markedsverdi er den neddiskonterte summen av innbetalingene obligasjonen gir (renter + pålydende).
Jeg må nå be dere konsentrere dere, og forstå det jeg skriver under her:
– Dersom markedsrenten er høyere enn kupongrenten på obligasjonen vil det bety at vi hver periode “taper” penger på å ha pengene i obligasjonen, sammenlignet med markedet ellers. Vi kunne jo alternativt ha fått mer dersom vi hadde plassert pengene i andre instrumenter i markedet. Da vil markedsprisen på obligasjonen være lavere enn pålydende, fordi vi krever å bli kompensert for den dårlige renten vi får ved å få en bedre pris. Det vi taper på at rentene er dårligere enn i markedet ellers vil vi kreve å få igjen ved en “rabatt” på obligasjonsprisen.
– Dersom markedsrenten er lavere enn kupongrenten på obligasjonen vil det bety at vi hver periode tjener penger på å ha pengene i obligasjonen sammenlignet med markedet ellers. I et slikt tilfelle vil markedsprisen være høyere enn pålydende, fordi vi er villige til å godta en høyere pris enn det vi får ved obligasjonens forfall, fordi rentene vi får underveis er bedre enn hva vi ville fått ved plassering i markedet for øvrig.
– Hvor mye høyere/lavere kursen er i forhold til pålydende vil veldig enkelt forklart avhenge av markedsrenten (ettersom det er den vi neddiskonterer kontantstrømmen med), og varigheten på obligasjonen (jo lengre det er igjen til forfall, jo lengre tid vil vi få en bedre eller verre kontantstrøm enn alternativet vårt). Når dere kommer dere til tredjeåret skal dere lære om begreper som durasjon og volatilitet, men det lar vi ligge for nå. Jeg tror jeg har skrevet litt om det i faget finansiell styring, hvis noen er sjukt interessert.
Da skal vi være i stand til å løse oppgaven vår:
Det du må gjøre er ganske enkelt å sette opp en kontantstrøm for de gjenværende kontantstrømmene, og neddiskontere dem til år 0 med avkastningskrav = markedsrenten. Som jeg skrev: obligasjonens markedsverdi = nåverdien av fremtidig kontantstrøm.
Kupongrenten er 8%, som betyr at du får 1.000*0,08 = 80 kroner i rente hvert år. Her betales den ut halvårig som betyr at du får 40 kroner pr halvår.
Ettersom det er 20 år til forfall, betyr det at du får 40 renteinnbetalinger, og på den førtiende innbetalingen får du i tillegg de 1.000 kronene.
Hva kan vi allerede si om prisen? Jo, den vil være lavere enn pålydende, fordi vi har en veldig lang løpetid med en obligasjon som gir en lavere rente enn markedet ellers. (Kupongrente < markedsrente).
Husk at ettersom det er halvårlig, blir avkastningskravet ditt 5,83% og ikke 12%. Jeg kommer frem til 5,83% ved å ta 1,12^0,5 (går fra lang til kort rente)
Legg inn i finanskalkulatoren:
CF0: 0
CF1-CF39: 40
CF40: 1040
I = 5,83%
NV = …?
Oppgave 2
En aksje med et P/E (pris-fortjeneste) forhold på 8 betaler en årlig dividende på $4,25. Utbetalingsforholdet er 60% av resultatet. Hva er aksjeprisen?
P/E står for Price/Earnings, eller pris/fortjeneste som det står i oppgaven. P/E viser forholdet mellom bedriftens aksjekurs (markedsverdi) og årsresultatet. P/E er en av de vanligste målene for hvor dyr en aksje er. Et lavt P/E-tall betyr at prisen for aksjen er lav i forhold til hvor mye selskapet tjener, og vice versa for et høyt P/E-tall. Hvis du skal bruke dette tallet for sammenligning bør du se på selskaper som ligner på hverandre, f.eks at de er i samme bransje.
Når du har hørt aksjeanalytikere snakke har du kanskje hørt de snakke om at en aksje “handles på høye multipler”? P/E kalles ofte multippel, fordi hvis man multipliserer P/E-en med resultat per aksje, ser man hva markedet er villig til å betale per tjente krone. Dersom aksjen handles på høye multipler betyr det at P/E er relativt høy.
Formelen er ganske intuitiv:
P/E = aksjekurs / resultat per aksje
Når du vet at de betaler ut 60% av resultatet som utbytte, og utbyttet er 4,25 pr aksje, skulle du være i stand til å finne ut hva resultatet pr aksje er ved hjelp av enkel matematikk. Når du har gjort det har du en ligning med én ukjent. Det bør du også være i stand til å løse selv.
Oppgave 3
Logo A/S betalte nettopp ut utbytte på $2,20 pr. aksje. Aksjen handles for øyeblikket til en pris på $57,75 og utbyttet er forventet å øke med 5% i året i all overskuelig fremtid. Hva er avkastningskravet til Logo?s aksje?
P0 = D1/Re-g
Hvor
*P0 er aksjens pris i dag
*D1 er utbytte neste år (som er lik utbytte i dag ganget med 1+g)
*Re er avkastningskravet
*g er vekst
Oppgave 4
Internrenten (IRR) er den diskonteringsrenten som gjør at nåverdien blir lik:
Hva betyr det egentlig at et prosjekt har positiv nåverdi? Betyr det at hvis nåverdien er 100 millioner, så er avkastningen på prosjektet 100 millioner? Nei, det gjør det ikke. Det betyr at prosjektets avkastning er 100 millioner kroner MER enn det vi alternativt kunne fått ved å investere pengene våres annerledes. Jeg pleier å si at verdiskapning handler om hva vi måler i forhold til. Hva kunne vi alternativt fått ut av ressursene? Noen ganger kan vi jo måle opp mot nåsituasjonen, men uansett: det handler om alternativ anvendelse av kapital. Det jeg prøver å formidle her er at verdiskapning skjer når et prosjekt skaper verdier utover beste alternative anvendelse av ressurser. Det er DETTE som skaper positiv nåverdi.
Begrepet “positiv nåverdi” har mange flere navn: superprofitt, EVA (Economic Value Added), Residualinntekt, økonomisk rente osv.
Verdiskapningen skjer altså når man tar ut en fortjeneste som er unormalt høy. Det skal i teorien ikke være mulig å gjøre i et effisient marked, ettersom det alltid vil komme nye aktører i markeder der det er mulig å oppnå superprofitt (positiv nåverdi). Det vil med andre ord si at når aktører etablerer seg i markeder, er det fordi de tror de kan hente ut superprofitt i markedet. Det er litt nerdete, men jeg vil likevel si det. Det er litt morsomt at et effisient marked består av utrolig mange aktører som mener at markedet ikke er effisient.
Det jeg har forsøkt å gjøre her er å fortelle dere forskjellen mellom nåverdi og avkastning. Nåverdien er den avkastning vi får UTOVER det vi krever å få for at vi skal gå for dette prosjektet heller enn et alternativt prosjekt. Internrenten er den prosentvise avkastningen vi FAKTISK får. Er denne større enn avkastningskravet har vi positiv nåverdi, fordi avkastningen vi faktisk får er større enn den vi krever. Er internrenten mindre enn avkastningskravet får vi negativ nåverdi, og vi vil få bedre avkastning ved å investere pengene i alternative prosjekter. Har vi en internrente som er lik avkastningskravet blir nåverdien lik 0. Vi får ingen avkastning utover det vi krever, og det vi kan få alternativt.
Har du nytte av bloggen? Vipps en kaffekopp eller et valgfritt beløp:
Vipps: 536077
Eller via Ko-fi: Ko-fi.com/hobbyokonomen
Spørsmål 5
Effektiv avkastning for en obligasjon er:
Knytt dette spørsmålet til min forklaring på internrente over.
Spørmål 6
Selskap A utbetalte nettopp et utbytte på 5 kroner pr. aksje. Selskapet er imidlertid inne i en kraftig vekstperiode og vil derfor øke utbytteutbetalingene med 10% de neste 3 årene. Etter dette vil utbytteutbetalingene falle tilbake til en vekstrate på 5% i året i overskuelig fremtid. Avkastningskravet på selskapets aksjer er 15%. Hva er dagens pris på selskap As aksjer?
Her får du altså en kontantstrøm med en vekst på 10% de neste 3 årene, for så å gå over i en “evig” vekst på 5%.
Da kan vi regne nåverdien av de tre første årene først, deretter regne nåverdien for en evig annuitet med konstant vekst. Husk at du må neddiskontere verdien av den evige annuiteten til år 0 også 🙂
Spørsmål 7
Aksjer i selskap X omsettes for tiden for kr 100. Selskap X har nettopp utbetalt utbytte på kr 5 pr. aksje. Selskapet har et avkastningskrav på 7,5%. Hva er forventet vekstrate for utbytte i selskap X?
Bruk formelen
P0 = D1 / Re-g
Løs med hensyn på g, så har du svaret. Husk at D1 = D0*1+g, og at D0 er utbyttet de betalte i år (5 kr).
Spørsmål 8
En aksje har en pris på kr 100 i dag men forventes å omsettes for kr 140 om to år. Aksjen vil ikke betale utbytte før tidligst om 5 år. Hva er årlig avkastning på aksjen i den kommende toårs perioden?
Legger inn i finanskalk:
CF0: -100
CF1: 0
CF2: 140
IRR = …?
Spørsmål 9
For fire år siden kjøpte du en aksje for 125 kroner. I de påfølgende årene har aksjens årlige avkastning hatt følgende utvikling:
År | Avkastning(%) |
1 | 8 |
2 | 5 |
3 | 0 |
4 | -10 |
Hva er aksjeprisen i dag?
År 1: 125*1,08 = 135
År 2: 135*1,05 = 141,75
År 3: 141,75
År 4: 141,75*0,90 = 127,575
Oppgave 10
En aksjes utbytte forventes å øke med 5% årlig i all fremtid. Aksjen utbetalte nettopp et utbytte på 10 kroner per aksje. Avkastningskravet for aksjen er 15%. Hva er dagens pris på aksjen?
P0 = D1 / Re-g
Oppgave 11
Den 1. januar kjøper du en aksje for 60 kroner. Den 1. mars i samme år mottar du 5 kroner i utbytte og 1. april selger du aksjen for 64 kroner. Dette tilsvarer en årlig avkastning på:
Jeg kom frem til riktig svar ved å legge inn kontantstrømmene på kalkulatoren, og regnet ut IRR. Deretter justerte jeg IRR til årsrente ved å ta (1+IRR)^12 – 1
Oppgave 12
En aksje som betaler 5 kroner i årlig utbytte, neste gang ett år fra i dag, omsettes for tiden for 80 kroner. Forventet avkastning er 14%. Hvilken pris kan det forventes at aksjen omsettes for om ett år?
Man forventer at aksjens verdi skal øke med 14%, som betyr at man forventer at aksjens verdi skal være 91,2 kroner. Så kan du se for deg at når selskapet betaler ut utbytte lik 5 kroner pr aksje, vil aksjeverdien reduseres tilsvarende.
Oppgave 13
En obligasjon er i dag priset til 103,57 kroner. Obligasjonen har to år igjen til forfall og en pålydende kurs på 100. Tilsvarende obligasjoner har en effektiv avkastning på 8%. Hva er obligasjonens kupongrente?
Bruk informasjonen og logikken jeg skrev i de første oppgavene i dette innlegget. Sett opp kontantstrøm og finn ut kupongrenta,
Nåverdien er 103,57, diskonteringsrenta er 8%, Kupongrenta, det som står over brøkstreken, er ukjent. Finn den ukjente.
Du kan bruke kalkulatoren. Finn annuiteten:
N = 2
I/Y = 8
PV = 103,57
FV = -1000
PMT = ??
Hva utgjør så PMT-verdien av pålydende? F.eks. dersom PMT = 50, vil det tilsvare 50/100 = 50%.
Oppgave 14
Et selskap har utstedt en obligasjon med en pålydende kurs på 1000 kroner. Obligasjonen har 5 år til forfall og betaler en årlig kupongrente på 5%. Prisen på obligasjonen er for øyeblikket 917,96 kroner. Hva er årlig effektiv avkastning(yield) på obligasjonen?
Bruk logikken fra tidligere oppgaver.
Oppgave 15
Aksjen i et selskapet er i dag priset til 100 kroner og selskapet har 10.000 aksjer utestående. Selskapet vurderer et nytt prosjekt med en investering på 2 millioner kroner. Prosjektet vil gi selskapet en evigvarende kontantstrøm på 150.000 kroner. Nettonåverdi for prosjektet er 20.000 kroner. Hva blir den forventede aksjeprisen etter investeringen i prosjektet?
Vi snakket om verdiskapning tidligere. Her ser vi i praksis at ved en NNV på 20.000 er det dette som er verdiskapningen for eierne. Det vil si at de 20.000 blir fordelt på de 10.000 aksjene, som gir en ny aksjeverdi påååå…?
Håper det var til hjelp.
Tusen takk!
Jeg vil takke deg Hobbyokonom. Du er min sol i vinter dager. Du er håp for meg. Setter så stor pris på hjelpen og dit god hjerte. I dag skal jeg sitte og jobbe med arbeidskrav med din veiledning. Jeg prøvde veldig hardt og klarte bare 5 oppgaver men i dag blir jeg ferdig takket være deg 🙂 muchas gracias!
FFM: *Nussnuss*
Kan jeg få oppgave 6 med teskje?
Ja, oppgave 6 med teskje hadde vært supert! (hjelp)
oppg. 7
hvordan kan man gange D0 med g når det er g man skal finne????
Juni Anker: Det er fremdeles en ligning med én ukjent – bare at den ukjente går igjen to ganger 🙂
Oppgave 9:
jeg forstår ikke hvordan 141,75 * 1,05 kan bli 141,75 ??
Kan du forklare dette? Prøvd å gjøre det rett i forhold til hvordan jeg selv har forstått oppgaven, men det samsvarer ikke med fasiten..
yónce: Det kan jeg forstå. Det er en skrivefeil. Det er ingen utvikling i kursen i år 3.
Hei! Kan du gjør arbeidskrav 4 som kom ut idag også?
Hola Hobbyokonom, vær så snill hjelpe oss med siste arbeidskrav (4) i finans. Jeg lærer finans ved hjelp av deg og dine forklaringene. På forhånd tusen takk.
FFM: Jeg tror faktisk ikke jeg rekker det. Jobber hver dag denne uka 🙁
Hei! mulig å gi meg svaret på oppgave 6? Har regnet ut, men lurer på om det er riktig svar.
Hei!
Kan du hjelpe?
En obligasjon med 4 år til forfall har en pålydende på 500 kr. Årlig kupong er 8%, og denne betales halvårlig, første gang om et halvt år. Markedsrenten er flat på 4.5% per år.
1. Hva er durasjonen/varigheten til denne obligasjonen?
2. Den flate markedsrenten endrer seg plutselig til 2.8% per år. Ved bruk av durasjonsmålet fra forrige spørsmål, hva blir den nye kursen på obligasjonen?
Jeg har beregnet D= 3,53 år – dvs. 1/2 årlig – 7,06 årlig. – Tror det er riktig.
Men klarer ikke komme frem til korrekt svar på ny kurs på obligasjon. Den skal være mellom 592 og 596,33.